Study of cyclic groups form a crucial part in group theory. Here are some important definitions, facts and examples of cyclic groups.
Cyclic group and its generator
Let be a group and
. Then the set
forms a subgroup of G and is called the subgroup generated by
.
If for some , then G is called a cyclic group and
is referred to as it’s generator.
Examples
- Integer modulo n,
whenever
, for
Counterexamples
, where p is any prime.
- Any non-abelian group.
Important facts
- Any cyclic group is abelian.
- Any cyclic group is either finite or countable.
- Any subgroup of cyclic group is cyclic.
- Any quotient group of cyclic group is cyclic.
- Any group of prime order is cyclic.
- Any group G, with
,
, where p and q are distinct primes is cyclic.
- Any non-abelian group is non-cyclic.
- Any group which is uncountable is not cyclic.
- If
is a generator of G, then
is also a generator of G.
- Any infinite cyclic group has exactly two generators and is isomorphic to
.
- Any finite cyclic group G is isomorphic to
, where
.
Book Suggestions
Textbooks (Use the amazon link below to buy the product and support us!)