# Category: CSIR-NET: Mathematical Sciences

## Analysis/Topology: Bounded and Totally Bounded Sets

Definitions Bounded set: Let <M,ρ> be a metric space. We say that the subset A of M is bounded if there exists a positive number L such that ρ(x,y)≤L (x,y∈A) (Wikipedia) Diameter of a set: If A is bounded, we define diameter of A (denoted by diam A) as diam A= ρ(x,y). If A is not…

## Analysis/Topology: Connected Sets in Metric Spaces

A short discussion on Connected Sets in Metric Spaces with definition, examples, counterexamples, properties and quizzes.

## Topology/Analysis: Homeomorphism

Definition If is one-one and onto (1-1 correspondence/bijection) continuous is continuous Then we call a homeomorphism between two metric spaces . The metric space are said to be homeomorphic. Properties and Theorems If f is a homeomorphism between metric spaces , The set G⊂ is open if and only if the image f(G)⊂ is open. The…

## Integral Equations and Calculus of Variations: Lecture Notes

Lecture Notes for IECV Coursework at MCC (From archives)

## Video Lecture: Examples of Metric Spaces (Lecture 2)

Here’s a video discussing a few simple examples of metric spaces.

## Video Lecture: Definition of Metric Spaces (Lecture 1)

Here’s a video discussing the definition of metric spaces, and the inspiration behind it. Rarely

## All About: Definition of Sets

A detailed discussion of #Definition of #Sets, including #examples, #counterexamples, #quizzes. Useful for #GRE #CSIR #JRF #NET #GATE #Mathematics Aspirants

## Integral Equations: Self Contained Coursework

Coursework to learn/quickly revise Integral Equations for Mathematics/Physics and Engineering Students.

Also useful for CSIR-NET and GATE Mathematical Sciences Aspirants.

## Examples and Counterexamples: Real Line with Discrete Metric/Topology

Examples and Counterexamples: Real Line with Discrete Metric/Topology. Did you try the challenges at the end? Leave your thoughts in the comments below!